Introduction	l-patch	Approximation with I-patches	Examples	Conclusion
000	0000000		000	00

Approximating Triangular Meshes by Implicit, Multi-Sided Surfaces

Ágoston Sipos, Tamás Várady, Péter Salvi

Budapest University of Technology and Economics

CAD'21, July 5-7, 2021

Introduction 000	l-patch 0000000	Approximation with I-patches	Examples 000	Conclusion

Outline

1 Introduction

- Motivation
- Previous work

2 l-patch

- Basics
- Previous work
- Faithful distance
- 3 Approximation with I-patches
 - Construction
 - Approximation
 - Refinement
- 4 Examples
- 5 Conclusion

Introduction ●00	l-patch 0000000	Approximation with I-patches	Examples 000	Conclusion
Motivation				

Implicit multi-sided patches

- Multi-sided surfaces used in many areas
 - Design
 - Hole filling & Vertex blending
- Exact representations \rightarrow
 - explicit shape control
 - watertight connections
- Generally n-sided parametric patches
- An interesting alternative: implicit patches
 - Easy inside-outside testing
 - Boolean operations
 - Efficient raytracing
 - Connect to regular implicit surfaces
 - Suitable for approximation

Introduction ○●○	l-patch 0000000	Approximation with I-patches	Examples 000	Conclusion
Motivation				

Approximation task

Fitting a smooth mesh with a collection of multi-sided patches in implicit form.

Introduction ○○●	l-patch 0000000	Approximation with I-patches	Examples 000	Conclusion
Previous work				

Previous work

- Mostly global implicit approximations:
 - Radial basis functions (Carr'01)
 - Poisson reconstruction (Kazhdan'13)
 - Neural networks (Takikawa'21)
- Very general methods without geometric meaning
- Our approach is closer to implicit modeling schemes [A-patch (Bajaj'95), functional spline (Li'90, Hartmann'01), ...]

Introduction 000	l-patch 0000000	Approximation with I-patches	Examples 000	Conclusion

I-patch

Introduction 000	l-patch ●0000000	Approximation with I-patches	Examples 000	Conclusion
Basics				

Basic formula¹

- $\begin{array}{l} {} \quad \ \ \left\{ R_i(x,y,z)=0 \right\} \quad \ \ implicit \ \ ribbons, \\ \left\{ B_i(x,y,z)=0 \right\} \quad \ \ implicit \ \ bounding \ \ surfaces \end{array}$
- $R_i \cap B_i \Rightarrow i^{\mathrm{th}}$ boundary

•
$$I = \sum_{i=1}^{n} \left(w_i R_i \prod_{j \neq i} B_j^{k+1} \right) + w \prod_{i=1}^{n} B_i^{k+1}$$

Patch:
$$\{I(x, y, z) = 0\}$$

- k: degree of continuity
- Free parameters: $w_i, w \in \mathbb{R}$

¹T. Várady, P. Benkő, G. Kós, A. Rockwood: *Implicit surfaces revisited* -*I-patches.* Geometric Modelling, Springer, Vienna, pp. 323–335, 2001.

Á. Sipos, T. Várady, P. Salvi

Approximating Triangular Meshes by Implicit, Multi-Sided Surfaces

BME

Introduction 000	l-patch 0●000000	Approximation with I-patches	Examples 000	Conclusion
Basics				

Example

3-sided G^1 l-patch:

 $w_1R_1B_2^2B_3^2+w_2R_2B_1^2B_3^2+w_3R_3B_1^2B_2^2+wB_1^2B_2^2B_3^2=0$

 \blacksquare On boundary $\# {\rm i},\, R_i(x,y,z)=0$ and $B_i(x,y,z)=0 \Rightarrow I(x,y,z)=0$

• On boundary #i,
$$I = R_i G + B_i^2 H$$

 $(G, H : \mathbb{R}^3 \to \mathbb{R}) \Rightarrow \nabla I = const \cdot \nabla P_i$

Introduction 000	l-patch 00●00000	Approximation with I-patches	Examples 000	Conclusion
Basics				

Additional properties

$$I = \sum_{i=1}^n \left(w_i R_i \prod_{j \neq i} B_j^{k+1} \right) + w \prod_{i=1}^n B_i^{k+1}, \ w_i, w \in \mathbb{R}$$

Interior C^{∞}

• G^k continuity to all R_i -s along the border

- $\blacksquare \ B_i\text{-s}$ derivatives do not affect $I^{(m)}, m \leq k$ on the boundary because of k+1 exponent
- Coincident bounding surfaces: slightly modified equation

Introduction 000	l-patch ○○○●○○○○	Approximation with I-patches	Examples 000	Conclusion
Previous work				

Our previous work²

Design with polyhedra

Setback vertex blending

²Á. Sipos, T. Várady, P. Salvi, M. Vaitkus: *Multi-sided implicit surfacing with I-patches*. Computers & Graphics 90, pp. 29-42, 2020.

BME

Á. Sipos, T. Várady, P. Salvi

Introduction 000	l-patch ○○○○●○○○	Approximation with I-patches	Examples 000	Conclusion
Faithful distance				

Alternative form of I-patches:

$$\begin{split} I_{orig} &= \sum_{i=1}^n (R_i \cdot \alpha_i) + \alpha_0 \\ I_{faithful} &= \frac{\sum_{i=1}^n (R_i \cdot \alpha_i) + \alpha_0}{\sum_{i=1}^n \alpha_i} \end{split}$$

 The offset of a faithful l-patch is the same as the l-patch created from the offsets of the ribbons.

Introduction 000	l-patch ○○○○○●○○	Approximation with I-patches	Examples 000	Conclusion
Faithful distance				

The offset of a faithful I-patch is the same as the I-patch created from the offsets of the ribbons (with the same boundings).

Faithful distance:

Gradient normalization:

Introduction 000	l-patch ○○○○○●○	Approximation with I-patches	Examples 000	Conclusion
Faithful distance				

The offset of a faithful I-patch is the same as the I-patch created from the offsets of the ribbons (with the same boundings).

Proof:

$$\begin{split} I &= \frac{\sum_{i=1}^{n} (R_i \cdot \alpha_i) + \alpha_0}{\sum_{i=1}^{n} \alpha_i} \\ I - d &= \frac{\sum_{i=1}^{n} (R_i \cdot \alpha_i) + \alpha_0}{\sum_{i=1}^{n} \alpha_i} - \frac{d \cdot \sum_{i=1}^{n} \alpha_i}{\sum_{i=1}^{n} \alpha_i} \\ I - d &= \frac{\sum_{i=1}^{n} ((R_i - d) \cdot \alpha_i) + \alpha_0}{\sum_{i=1}^{n} \alpha_i} \end{split}$$

Á. Sipos, T. Várady, P. Salvi

	l-patch	Approximation with I-patches	Examples	Conclusion
000	00000000	00000000	000	
Faithful distance				

A good distance measure

Á. Sipos, T. Várady, P. Salvi Approximating Triangular Meshes by Implicit, Multi-Sided Surfaces

BME

Introduction 000	l-patch 0000000	Approximation with I-patches	Examples 000	Conclusion

Approximation with I-patches

Introduction 000	l-patch 0000000	Approximation with I-patches ●0000000	Examples 000	Conclusion
Construction				

Input

- A (smooth) triangle mesh
- A vertex graph on this mesh

Á. Sipos, T. Várady, P. Salvi

	l-patch	Approximation with I-patches	Examples	Conclusion
		0000000		
Construction				

Construction – overview

- In each vertex: normal vector estimation from mesh
- On each edge:
 - A ribbon surface blending the corner planes
 - A bounding surface intersecting the mesh between the corners (broadly) perpendicularly
- Each face of the graph is filled with a patch

Introduction	l-patch	Approximation with I-patches	Examples	Conclusion
000	0000000		000	00
Construction				

Construction – ribbons

- A blend of the corner planes
- Approximated on sample points along the bounding and the mesh

Á. Sipos, T. Várady, P. Salvi

Introduction 000	l-patch 0000000	Approximation with I-patches	Examples 000	Conclusion
Construction				

Construction – boundings

- Internal edge \Rightarrow a plane
 - containing the corners and the average of the normals
- Boundary edge ⇒ curved bounding
 - same kinds of blend surfaces as ribbons

Introduction	l-patch	Approximation with I-patches	Examples	Conclusion
000	00000000		000	00
Construction				

Construction – ribbon approximation

Ribbons (and curved boundings) are approximating sample points along the bounding and the mesh

"Better" is chosen (criteria: 1. normal consistency, 2. algebraic error)

Á. Sipos, T. Várady, P. Salvi

Introduction	l-patch	Approximation with I-patches	Examples	Conclusion
000	00000000	○○○○●○○	000	
Approximation				

Setting the optimal weights

$$I = \sum_{i=1}^n \left(w_i R_i \prod_{j \neq i} B_j^{k+1} \right) + w \prod_{i=1}^n B_i^{k+1}$$

• R_i, B_i are fixed by this point

• Only scalars (w_i) need to be set

Cost function:

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{N} I_{\mathbf{w}}^{2}(\mathbf{q}_{i}), \text{ s.t. } \max_{i,j} \left(\frac{w_{i}R_{i}(\mathbf{c})}{B_{i}^{2}(\mathbf{c})} \middle/ \frac{w_{j}R_{j}(\mathbf{c})}{B_{j}^{2}(\mathbf{c})} \right) \leq \omega,$$

where \mathbf{q}_i are the data points to be approximated, \mathbf{c} is the central point of the patch.

Introduction 000	l-patch 0000000	Approximation with I-patches	Examples 000	Conclusion
Approximation				

Setting the optimal weights – constraining

Cost function:

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{N} I_{\mathbf{w}}^{2}(\mathbf{q}_{i}), \text{ s.t. } \max_{i,j} \left(\frac{w_{i}R_{i}(\mathbf{c})}{B_{i}^{2}(\mathbf{c})} \middle/ \frac{w_{j}R_{j}(\mathbf{c})}{B_{j}^{2}(\mathbf{c})} \right) \leq \omega,$$

The constraint was introduced to prevent one side interpolant dominating others. (ω is a user parameter)

BMF

Á. Sipos, T. Várady, P. Salvi

Introduction	l-patch	Approximation with I-patches	Examples	Conclusion
000	0000000	○○○○○○●	000	
Refinement				

Adaptive refinement

Approximation error too high \Rightarrow subdivide the patches

Splitting ribbon and both patches

Splitting a single patch while keeping ribbon (T-node)

Introduction 000	l-patch 00000000	Approximation with I-patches	Examples 000	Conclusion 00

BME

Introduction	l-patch	Approximation with I-patches	Examples	Conclusion
000	00000000		●00	00

Shoe last

Average deviation: 0.069%, maximum deviation: 0.35%

Á. Sipos, T. Várady, P. Salvi

Introduction	l-patch	Approximation with I-patches	Examples	Conclusion
000	0000000		0●0	00

Sheet metal

A. Sipos, T. Varady, F. Salvi

Introduction 000	l-patch 00000000	Approximation with I-patches	Examples 00●	Conclusion

Concept car

Á. Sipos, T. Várady, P. Salvi

Introduction 000	l-patch 00000000	Approximation with I-patches	Examples 000	Conclusion

Conclusion

Introduction	l-patch	Approximation with I-patches	Examples	Conclusion
000	0000000		000	●0

Summary

I-patches

- Suitable for multi-sided modeling
- Faithful distance field

Approximation

- Constructing ribbon/bounding surfaces
- Setting interior parameters
- Refining the patchwork

Introduction	l-patch	Approximation with I-patches	Examples	Conclusion
000	0000000		000	○●

Questions?

Thank you for your attention.

Contact: asipos@edu.bme.hu

